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Abstract

Due to their distributed nature wireless acoustic sensor net-
works offer great potential for improved signal acquisition,
processing and classification for applications such as mon-
itoring and surveillance, home automation, or hands-free
telecommunication. To reduce the communication demand
with a central server and to raise the privacy level it is desir-
able to perform processing at node level. The limited pro-
cessing and memory capabilities on a sensor node, how-
ever, stand in contrast to the compute and memory inten-
sive deep learning algorithms used in modern speech and
audio processing. In this work, we perform benchmarking
of commonly used convolutional and recurrent neural net-
work architectures on a Raspberry Pi based acoustic sensor
node. We show that it is possible to run medium-sized neu-
ral network topologies used for speech enhancement and
speech recognition in real time. For acoustic event recog-
nition, where predictions in a lower temporal resolution are
sufficient, it is even possible to run current state-of-the-art
deep convolutional models with a real-time-factor of 0.11.

1 Introduction

Audio and speech signal processing over wireless acous-
tic sensor networks (WASNSs) [1] has become an interest-
ing research topic for two reasons. First, if acoustic sen-
sor nodes are distributed over an environment, it is more
probable that a sensor is close to a relevant sound source
than with a single central compact microphone array. Con-
sequently, typical signal enhancement and classification
tasks, such as noise reduction, dereverberation, source sep-
aration, acoustic event detection, and speech recognition
can be expected to operate at higher SNR and thus deliver
better enhancement and recognition results compared to a
recording by a distant microphone. A second reason for the
interest in WASNSs is the ubiquity of wireless communi-
cations and the inexpensiveness of sensor nodes equipped
with sensing, computing and communication capabilities.

However, the computing power on a sensor node is lim-
ited compared to what is available on desktop computers or
even servers. This limitation stands in contrast to the recent
developments in audio and speech processing, where com-
pute intense deep neural networks (DNNs) have made in-
roads in almost every enhancement and classification task.
Typical high-performance networks for acoustic event de-
tection have tens of layers or even more and several mil-
lions of learnable parameters [2]. An interesting question
is therefore: are high-performance DNNs a viable option
for WASNs?

An often used approach to run signal processing tasks
on sensor nodes is to distribute the algorithm over the net-
work. Parts of the algorithm are run locally on a sensor
node and the nodes exchange intermediate results among
each other to eventually come up with almost the same en-
hancement/classification performance as a centralized so-
lution, see e.g. [3]. In the case of neural networks, it needs
to be investigated if this approach is sensible because the
intermediate (hidden) layers of the network are often very

wide and the transmission of their activations to neigh-
boring nodes would result in a significant communication
overhead. Nevertheless, this is a potentially interesting line
of research, which is, however, not pursued here.

There has been a lot of work on reducing the compu-
tational and memory footprint of neural networks. One
approach is to shrink weight matrices by means of sin-
gular value decomposition [4] or vector quantization [5].
Another interesting line of research applies ideas from ap-
proximate computing to reduce the computational effort
[6, 7], e.g., by intentionally using errorprone computing el-
ements such as multipliers with, however, greatly reduced
energy consumption. If the network is trained with such
only approximate computations, it can be made quite re-
silient to such imperfections. One can also introduce al-
gorithmic changes to speed up computations or to reduce
the memory footprint such as an efficient design of convo-
lutional neural networks [8] or on-the-fly language model
rescoring [9]. Finally, dedicated sensor node hardware can
be employed to run DNNGs.

In these techniques, either the software or the hard-
ware is device specific to accommodate for resource con-
straints. However, a question to be answered in the first
place is, what if we use off-the-shelf hardware and ubiqui-
tous neural network software implementations, how com-
plex a network one can afford to be? This is the question
we are addressing in this contribution. We consider a typ-
ical widely used low-cost hardware platform, a Raspberry
Pi Model 3b+ device, which, admittedly, is not a very low-
cost and parsimonious sensor node, and benchmark typical
high-performance network topologies on this device. We
are considering two tasks typically performed on WASNSs,
acoustic event detection and automatic speech recognition.
Interestingly, the platform can afford quite complex mod-
els and still offer real-time processing capabilities, as we
will demonstrate in our experiments. This renders device-
specific modifications for the most part unnecessary.

This paper is organized as follows. With a focus on
acoustic event recognition first the corresponding DNN ap-
proach is explained and the employed DNN topologies will
be presented. Secondly, the considered speech recognition
system will be reviewed. Finally, the event and speech
recognition systems will be benchmarked on the Rasp-
berry Pi while recognition performance is evaluated on
Google’s AudioSet and the CHiME-4 robust speech recog-
nition challenge, respectively.

2 Acoustic Event Recognition

Acoustic event recognition asks for predictions whether
an event is active or inactive in a certain time segment.
In particular, it is possible that multiple events are ac-
tive at the same time. Therefore, we perform K binary
classifications rather than a single one, with K being the
number of events of interest. Due to the availability of
large scale databases, we aim at making predictions in
time segments of 10s here, which is a resolution high
enough to perform monitoring and diarization tasks. To
do so, neural network models are used to output logits
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Figure 1: Convolutional building blocks

Y = [yi1,...,yr] = DNN(X) in a higher temporal res-
olution first, where X denotes the input feature sequence
and y; denote the ¢-th K -dimensional logit vector.

Here, log-mel-band-energies (LMBEs) are used as in-
put extracted from the short time Fourier transform (STFT)
of the audio signal. Do note that the number of time steps
T in the output does not necessarily need to match the
number of time steps in the input here. The logits are fi-
nally averaged y = % Zf:l y: and segment-level posteriors
are obtained using the sigmoid activation Z = ¢(¥). The
models are trained using the binary cross entropy loss

K
L(Z7Z) = — Z [Zk log 2, + (1 — zk)log(l — Zk)]
k=1
with z; denoting the binary target for the k-th event.

3 Neural Network Topologies

DNNs have been shown to be able to model high-level ab-
stractions in data by using many layers of non-linear trans-
formations each increasing the level of abstraction. Be-
sides standard fully connected layers fc(V), with N denot-
ing the number of units in the layer in this context, more
sophisticated convolutional and recurrent layers allow to
process structured input data, such as images and audio,
more efficiently and facilitate training of deep structures.
In the following, we will briefly review the basic building
blocks used in the neural network topologies considered
afterwards. For a more detailed explanation, however, it is
referred to the literature. [10]

3.1 Building Blocks

Convolutional layers conv(W, N, S x S¢) perform discrete
convolutions of its input feature maps with learnable ker-
nels. It is defined by the kernel size W xW, the number
of kernels N and the stride S;xS;. Convolutional layers
are followed by batch normalization [11] and ReLU acti-
vation functions if not stated otherwise. Additional pool-
ing stages pool(P;x P;) with the pool size P,x P reduce
the size of the feature maps and make extraction invariant
to small translations.

In recent years several techniques and networks have
been proposed to enable increasingly deeper models. In
this work we consider residual and dense networks, which
use skip connections to facilitate training as explained in
the following.

Residual blocks [12] implement multiple convolu-
tional layers in a feed-forward architecture. Additionally,
residual connections are added, which bypass the convolu-
tions by summing the convolutional output with the block’s
input as shown in Fig. 1a and Fig. 1b. Note that the con-
volutional layers might change the number or size of the

feature maps due to a different number of kernels or strid-
ing, respectively. In that case, the gray hashed convolution
is applied on the residual connection to match the input to
the blocks output shape.

Dense blocks [13] perform one or more convolutions
and concatenate the resulting feature maps and the input
feature maps to build its output. To not change the size
of the feature maps within a block, no striding is used. A
dense block is shown in Fig. 1c. Because the total number
of feature maps might become very large, optional bottle
neck layers can be added, which apply a 1x1 convolution
before the block’s actual W x W convolution to reduce the
number of input feature maps.

Recurrent layers rn(N) are designed to process se-
quential data such as audio. Unlike fully connected and
convolutional layers, which only have feedforward con-
nections, recurrent layers also contain feedback connec-
tions. This means the output at a certain time step does
not only depend on the current input but also on previous
inputs from the sequence. To access information from the
future as well, bidirectional recurrent layers process the in-
put sequence in positive and negative time direction using
two recurrent sub-layers with N units each and forward
the concatenation of size 2N to the next layer. To mitigate
the vanishing gradient problem through time [14], sophis-
ticated recurrent architectures have been developed, which
will be reviewed in the following.

Long-short-term-memories (LSTMs) employ, in ad-
dition to the feedback of the layer’s output, an inner state,
which allows memorizing information over long periods.
Input gates, forget gates and output gates allow to store,
delete and access information.

Gated recurrent units (GRUs) can be understood as a
(simpler) variation of the LSTM. They drop the inner state
and only use the layers output as a feedback. However, to
not suffer from the vanishing gradient problem, the feed-
back is not transformed directly but reset and update gates
are used to add information from the feedback to the input
and to update the feedback to the new output, respectively.
It has been shown that for some tasks GRUs perform better
than LSTMs [15] as will also be observed in our experi-
ments.

3.2 Topologies

First, we consider purely convolutional neural networks
(CNNs), which are slightly modified versions of the weak
acoustic labels (WAL) Net [16, 17], ResNet-50 [12] and
DenseNet-121 [13]. While the first has been specifically
designed for the considered event recognition task and
have shown to achieve state-of-the-art, the two latter orig-
inate from the image recognition community but have also
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Table 1: Purely convolutional neural networks used for
acoustic event recognition. Input layer is at the top of the
table.

Plain(k) + RNN | WRN(K) + RNN | Dense + RNN

conv(3, 16, 1x1)

resB(3, 16k, 1x1)
resB(3, 32k, 2x2)

7xdense(3, 16)
conv(1,64,1x1)
pool(2x2)
12xdense(3, 16)
conv(1,128,1x1)
pool(1x2)
8xdense(3, 16)
pool(5x2)

2xconv(3, 16k, 1x1)
pool(2x2)

2xconv(3, 32k, 1x1)
pool(1x2)

2xconv(3, 64k, 1x1)
pool(5x2)

resB(3, 32k, 1x1)
resB(3, 64k, 1x2)

resB(3, 64k, 1x1)
pool(5x2)
fc(1024)
2xrnn(512)
fc(1024)
fc(K)

Table 2: Hybrid convolutional-recurrent models.

been intensively used for and achieve state-of-the-art per-
formance in event recognition [2, 18]. For these models
128 LMBEs are extracted using a frame length of 20 ms
with an overlap of 10ms. The architectures are outlined
in Tab. 1. They consist of six stages each reducing fea-
ture size and time resolution by a factor of two. Con-
volutions in these stages use padding such that a reduc-
tion of size is only achieved by pooling and striding. A
final convolutional layer without padding extracts 1024
features/0.64 s and a final fully connected layer outputs
logits for K events. The Residual blocks and the dense
blocks with bottleneck layers used here consist of three
and two convolutional layers, respectively, resulting in a
total of 13, 51 and 122 layers for the WAL Net, ResNet
and DenseNet, respectively.

Secondly, we propose variants of CNN + recurrent neu-
ral network (RNN) hybrids shown in Tab. 2. The CNNs are
inspired by the four block structure of wide residual net-
works (WRNs) [19]. Residual and the dense blocks consist
of two and one conv layers here, respectively. Because the
proposed models use fewer pooling/striding stages, only
64 LMBEs are extracted here in frames of 40 ms length
with an overlap of 20 ms. The CNNs in total reduce the
feature map size by factors of eight and ten in feature and
time dimensions, respectively. Hence, the number of time
steps that need to be processed by the following layers is
reduced from 50/s to 5/s making it more efficiently for ex-
ecution on devices with limited computational power. A
linear layer maps the CNN output to 1024 features per time
step, which build the input to the classifier network consist-
ing of two recurrent layers followed by two linear layers.

4 Speech Recognition

For speech recognition a DNN / hidden Markov Model
acoustic model (AM) is employed. Thus, the DNN is
trained to provide the acoustic emission scores. An op-
tional DNN based mask estimator aims at masking the
speech signal and the noise signal, allowing to compute
speech and noise statistics and perform speech enhance-
ment beforehand. For a more detailed overview of this ap-
proach please refer to [20].

First, an STFT spectrogram with frame lengths of
25 ms, a hop size of 10 ms and FFT length of 512 is com-
puted. In contrast to acoustic event recognition, masks
and acoustic posteriors need to be provided in a higher
temporal resolution which is why no temporal pooling
and striding can be performed resulting in higher com-
putational expenditure. Thus, only medium sized net-
works can be deployed on the Raspberry Pi. The topolo-
gies used are smaller versions of the networks proposed
in [20, 21], which achieved very competitive performance
on the benchmarking tasks CHiME-3, CHiME-4, and RE-
VERB. The mask estimator network consists of one recur-
rent layer RNN with 256 units followed by three fully con-
nected hidden and one output layers with 1024 and 512
units, respectively. For the subsequent AM 64 LMBEs
are extracted. Here, WRN + RNN hybrid models are used
similar to those from the acoustic event recognition. How-
ever, no temporal pooling and striding is performed and
the last pooling operation is replaced by a stride in feature
dimension in the initial conv layer. In contrast to batch
normalization, statistics for normalization are only accu-
mulated over time here, which has shown to yield better
performance. Further, only a single recurrent layer with
256 units is used and the second recurrent layer is replaced
by a fully connected layer with 1024 units.

S Experimental Evaluation

We conduct benchmarking on a Raspberry Pi Model 3b+
device [22], which hosts a recent Raspbian Stretch instal-
lation including a Kernel version 4.14. The Pi is equipped
with 1GB LPDDR2 RAM memory and an ARM AS53
quad-core processor running at 1.4 GHz. For additional
information on our hardware please refer to [23]. We also
provide an installation guide on how to setup a WASN con-
sisting of Raspberry Pis [24]. On the Raspberry Pi we first
build Bazel and subsequently Tensorflow [25] following
the guide from [26]. For Tensorflow 1.5.0 we documented
all required installation steps on our project website [24].
Tensorflow 1.5.0 in combination with Bazel 0.8.0 compiled
on the Pis in a few hours, whereas newer versions of 7en-
sorflow either broke down during the compilation process
or after installation when importing Tensorflow. The in-
vestigated Tensorflow models are then executed on the Pi
using floating-point arithmetic with 32 Bit precision. Ex-
ecution time on the Raspberry Pi is measured by the real
time factor (RTF) stating the ratio between execution time
and length of the processed time segment. RTFs have been
determined using ZTensorflow’s benchmarking tool by pro-
cessing 100 segments with a length of 10s each.

For the event recognition task Google’s AudioSet [27]
is used for training and evaluation. The whole database
consists of 2M Youtube audio clips with a maximum
length of 10s and sampling frequency of 44.1 kHz. Each
of the clips was manually labeled with event tags from a
hierarchical ontology of K=527 different event labels in
total. Due to limited resources, however, we use the bal-



Model #Params/10° RTF mAP  mAUC
WAL Net 5.0 0.11 191% 92.5%
ResNet 32.5 0.36 184% 92.4%
DenseNet 11.6 0.31 197% 93.0%
Plain + BGRU 334110 0.19+40.14 220% 94.0 %
WRN +BGRU  49+11.0 043+0.14 21.7% 94.0 %
Dense + BGRU  2.7+11.0 037+0.14 21.8% 93.8%
Plain + BLSTM  3.3+142 0.19+40.16 194% 93.5%
Plain + GRU 33450  0.1940.07 203% 933%
Plain + LSTM 33463  0.194+0.08 17.8% 93.0%

Table 3: Acoustic event recognition performance in terms
of number of model parameters, real time factor on Rasp-
berry Pi, mean average precision and mean area under
curve. For all hybrid models k=4 is used.

anced training set here consisting of 22K audio clips with
at least 59 examples per event. Validation is performed on
a small portion of the unbalanced training set with at least
7 examples per event. For the final evaluation the official
evaluation dataset is used comprising 20 K audio clips with
at least 59 examples per event. However, do note that at
the time of downloading around 2 % of the Youtube videos
were no longer available.

Recognition performance is measured in terms of mean
average precision (mAP) and mean area under curve
(mAUC) [28]. The average precision (AP) for a single
event class is computed as the average of precision val-
ues obtained for all thresholds accepting a new positive
example. The area under curve (AUC) for a single event
is given as the area under the receiver operating character-
istic curve. The mAP and mAUC are then obtained as the
mean of APs and AUCs over all event classes. For both
metrics high values are desirable. Training is performed
for 50 epochs using Adam optimization with a learning rate
of 10~* and an early stopping criterion of 6 epochs without
improvement of the mAP on the validation set. The stated
mAP and mAUC values represent one-shot results.

Results are presented in Tab. 3. Note that originally re-
ported mAP and mAUC for the WAL Net are 21.3 % and
92.7 % [16], respectively, whereas we obtain 19.1 % and
92.5 % here. This may be explained by slightly different
evaluation sets (due to the missing Youtube clips) as well as
further implementation details. The WAL Net is reported
as the current state of the art for balanced training, which
can be executed on the Raspberry Pi with a RTF of 0.11.
We can see that it is also possible to run the dramatically
deeper ResNet and DenseNet architectures around three
times faster than real time. However, no or only little im-
provement over the WAL Net can be achieved. This indi-
cates that the training data used here might be too small to
take advantage of the more complex ResNet and DenseNet
architectures. The hybrid models allow to improve recog-
nition performance over the purely convolutional networks
and are still executable in real-time with a big margin. Us-
ing a plain seven-layer CNN combined with bidirectional
GRU (BGRU) layers improves mAP and mAUC by 2.3 %
and 1.0 %, respectively, compared to purely convolutional
networks, and are better than what was stated in [16] as
state of the art. Surprisingly GRUs perform noticeably bet-
ter than LSTM layers here. If we aim at continuous online
processing on a Raspberry Pi, only unidirectional models
can be used, which perform worse than the bidirectional
models here but still better than purely convolutional net-
works.

To evaluate speech recognition performance of the pro-

Model #Params/10° RTF WER
WRN(@4) + BLSTM  4.9+62  0.69+0.78 20.0 %
+ BLSTM Mask +4.2 +0.37 11.4 %
WRN(2) + LSTM 1.7+46 026+0.71 462%
+ LSTM Mask +3.4 +0.34 18.1 %

Table 4: Speech recognition performance in terms of num-
ber of parameters, real time factor on Raspberry Pi and
word error rates.

posed models the real evaluation dataset of the fourth
CHIME challenge [29] is used. The CHiME data was
recorded on tablets with six microphones and a sampling
rate of 16kHz in four different noisy environments with
negligible reverberation. The training procedure of [20] is
adopted. Recognition performance is measured in terms
of word error rate (WER) given as the ratio of Deletions,
Insertions and Substitutions performed by the system and
the number of actual words in the reference. Note that a tri-
gram language model without rescoring from the KALDI
toolkit [30] was used for decoding, which is not part of
the benchmarking as we focus on neural network architec-
tures here. The decoding, however, could be performed on
a second node in an acoustic sensor network.

Results are shown in Tab. 4. We can see that for contin-
uous real time online processing on a single node only the
smaller WRN(2) + LSTM acoustic model without beam-
forming can be used, which has a rather poor recogni-
tion performance of 46.2 % though. However, speech en-
hancement greatly improves results and we argue that the
mask estimation and beamforming part can be performed
on one node in a WASN, e.g. the node acquiring the sig-
nal, whereas the recognition is performed on another node.
Note that mask estimation is only performed on a single
channel here, which has shown to not degrade performance
and saves computation time. If we are further able to per-
form offline speech recognition and distribute our AM on
two different nodes, a recognition performance of 11.4 %
can be achieved, which is, in this setting without language
model rescoring, close to state of the art [31].

6 Conclusions

The experimental study reported in this paper has shown
that even large neural networks for acoustic event recog-
nition, which achieve state of the art classification perfor-
mance, can be run on a Raspberry Pi much faster than real-
time. Even a sophisticated automatic speech recognition
system, which achieved competitive performance on re-
cent challenge tasks, can be run below realtime when dis-
tributed on multiple sensor nodes. These are good news,
because it means that for many real-world tasks a cloud-
based solution is not necessary, which greatly enhances the
user’s confidence that his/her data are kept private. Cer-
tainly, the hardware platform used in this study was not
very low-cost. For less powerful platforms, adjustments
of the algorithms may be necessary. But for many scenar-
ios it occurs, that devoting research efforts to improving
recognition performance is more reasonable than spending
efforts on downsizing algorithms to reduce computational
and memory requirements.
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