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Abstract
Signal processing in Wireless Acoustic Sensor Networks
(WASN) is based on a software framework for hosting the al-
gorithms as well as on a set of wireless connected devices rep-
resenting the hardware. Each of the nodes contributes memory,
processing power, communication bandwidth and some sensor
information for the tasks to be solved on the network.

In this paper we present our MARVELO framework for dis-
tributed signal processing. It is intended for transforming exist-
ing centralized implementations into distributed versions. To this
end, the software only needs a block-oriented implementation,
which MARVELO picks-up and distributes on the network. Ad-
ditionally, our sensor node hardware and the audio interfaces re-
sponsible for multi-channel recordings are presented.

1 Introduction
Distributed signal processing in sensor networks has attracted a
lot of attention in the past years [1, 2]. During the early phase
of this research topic, authors usually selected exemplary algo-
rithms, e.g., a beamformer, and investigated how to distribute
the computational task on a network of nodes. Investigated algo-
rithms include distributed Kalman filters [3, 4], distributed Delay-
and-Sum Beamformer (DSB) [5], distributed Minimum Vari-
ance Distortionless Response (MVDR) beamformer [6], acoustic
source localization [7] or generalized sidelobe canceller [8].

In later publications, more general approaches were pre-
sented which might be less task-specific and thus easier to adapt
to other problem statements. Bertrand et al. presented the class of
Distributed Adaptive Node-specific Signal Estimation (DANSE)
algorithm for Minimum Mean Square Error (MMSE) estimators
[9, 10]. A distributed Expectation-Maximization (EM) algorithm
was discussed in [11] and distributed compressive sensing is the
topic of [12], just to name a few signal processing techniques that
could be useful in a variety of scenarios and tasks.

However, these strategies all target the same idea: First they
estimate parts of the problem locally and, subsequently, try to
find a global optimum by averaging across the local results. For
this task, decentralized algorithms like gossipping [13] can be
applied. Another interesting idea for distributing an estimation
problem was presented by Vlachos et al. in [14] where a corre-
lation matrix was locally estimated in parts and the missing parts
where reconstructed.

All publications mentioned above try to optimize their ap-
proaches to work on a specific hardware at low data rate, lim-
ited memory and computational power. Some consider data
rate-preserving strategies, e.g., [9], or transform a bandwidth-
consuming task (signal distribution) into a computation power-
consuming one (matrix reconstruction), e.g., [14].

The ongoing progress in hardware development for em-
bedded hardware reduces the need for algorithm optimization,
since every generation offers more performance at reduced costs.
Power consumption is out of our scope, because these devices are
normally power plugged.

Recent examples are neural network-empowering chips, like
the Tensor Processing Units (TPUs) from Google or the Bionic
SoCs from Apple. They will enable the local processing of large
neural networks on embedded devices.

But in a large network, we still have the question of which
node will be running which part of the distributed algorithm.

In this paper, we hypothesize that the algorithm is imple-
mented in a block-oriented fashion (e.g., [15]), as is common
practice for many online acoustic signal processing algorithms.
The blocks may perform only small parts of the algorithm with
standard operations, e.g., a Fast Fourier Transform (FFT), or
even bigger algorithm parts like a gradient descent filter update.
Hence, we look now at distributing the blocks on the networking
nodes.

Our framework “Multicast Aware Routing for Virtual net-
work Embedding with Loops in Overlays (MARVELO)” does
not split an algorithm into blocks, so that the degree of freedom is
defined by the given blocks. Therefore, all blocks should be kept
as small as possible.

After distributing the algorithms, another question rises up:
which route should be taken to forward the data between the
nodes. In modern network architectures, Software Defined Net-
work (SDN) changes the network behavior when it comes to tak-
ing routing decisions. In its simplest definition, SDN relies on
a controller (server), which receives all the networking updates
(e.g., bandwidth utilization) from the networking nodes. Then,
the server builds a forwarding table and sends it to the nodes, so
that they know to where the data needs to be forwarded.

SDN has been introduced to Wireless Sensor Networks
(WSN) in Sensor OpenFlow [16], Software Defined Wireless
Networks (SDWN) [17] and TinySDN [18]. However, they were
all limited to the routing functionalities and did not support algo-
rithm distribution.

SDN-WISE [19] is an operating system framework that com-
bines the SDN and algorithm distribution concepts. It focuses,
however, on networking applications (e.g., firewalls or proxies)
and considers routing only for auto-configuration purposes.

Our MARVELO framework is a middleware that combines
SDN and algorithm distribution, so that it jointly considers the
allocation of functions and the routing decisions. Moreover, it
supports various types of applications. We focus here on WASN
applications.

The paper is organized as follows: The MARVELO frame-
work is described in Sec. 2, where the focus is set on the inte-
gral parts Monitoring (2.1), Management (2.2), Communication
(2.3) and preparing an existing algorithm to work with MAR-
VELO (2.4). Our hardware platforms for WASNs are presented
and discussed in Sec. 3 and we conclude the paper with some
experiments in Sec. 4 and a brief conclusion in Sec. 5.

2 Software Framework
There are two main roles in the MARVELO framework: con-
troller and client (see Fig. 1). A controller is hosted either on
one of the nodes or on a special device connected to the network,
(e.g., a gateway to an external network or a large processor). The
controller’s responsibilities include monitoring and management
of the network.

Within the network, the controller distributes the algorithm’s
code (i.e., blocks) and the accompanying data (e.g., models, pa-
rameter files, etc.) required for executing the code. Additionally,
it collects log files for debugging purposes and controls the pro-
cess life cycle (e.g., initialization, start, stop). Moreover, the rout-
ing decisions are taken by the controller (actual traffic forwarding
of course takes place at the clients).

Each client hosts a single “Daemon” process, whose main
task is to process the algorithm blocks and forward their outputs



to the next blocks in the processing queue, as defined by the con-
troller. Hence, they are responsible for performing the algorith-
mic work on the nodes.

Algorithm blocks are encapsulated in independent processes,
enabling parallel processing of multiple blocks controlled by the
Linux kernel scheduler.
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Figure 1: Software architecture for the monitoring function: Ex-
ample with server and two clients.

2.1 Monitoring
Communication between controller and clients (Fig. 1) takes
place through two different ports. The CMD ports are exclusively
used for internal communication between controller and clients.
For example, commands are sent through these ports to start/stop
a process, and to check reachability of other clients in the net-
work. Additionally, it can be used to collect the system status of
the clients. The MSG ports are used to monitor the progress of
each processing algorithm and visualize their terminal outputs, if
this is required for debugging or supervision.

Messages from all processes running on a given node are col-
lected by a local Messaging module. It forwards the messages
through its MSG port to the controller, which can display all de-
bugging logs using a special Debug module.

2.2 Management and Configuration
Process management and algorithm configuration are based upon
a single Extensible Markup Language (XML) file (compare ex-
ample in Fig. 2). It is a machine and human-readable represen-
tation describing the distribution of the blocks. The XML file
specifies the individual nodes on which the processing blocks of
the algorithm are hosted, defines the routes between the blocks
(i.e., inputs and outputs) and states parameters of the blocks (e.g.,
number of channels).

The root element of the XML document is network. It con-
tains multiple children elements of type node; each representing
a single hardware device defined by the attribute pi_id. This
attribute can either be an IP address or a hostname.

Each node has one or multiple children elements of type
algorithm. They define and parametrize the processes for en-
capsulating single processing blocks, including the information
from where the block receives the input, and to where it will send
its output. Furthermore, the attributes path and executable
are set to define the binary to be executed and where to find it.

The path attribute refers to a local folder on the controller
containing all data required for processing the block, including
the binary (attribute executable) and all additional data. Note
that MARVELO automatically sends all files and folders includ-
ing all sub-folders to the respective nodes, so a user does not have
to take care about how to push the data to the nodes for synchro-
nization.

A child element algorithm knows three optional children
elements input, output and parameter. The latter can be
used to specify any input parameter to be passed during the invo-
cation of the binary (e.g., string or int), whereas the chronological

� �
1 <network>
2 <node pi_id="10.0.1.1">
3 <algorithm path="record_path"
4 executable="./recording">
5 <output target_pi_id="10.0.1.2"
6 pipe_id="1"/>
7 <parameter param="−−channels 2"/>
8 </algorithm>
9 </node>

10 <node pi_id="10.0.1.2">
11 <algorithm path="beamformer_path"
12 executable="./beamforming">
13 <input source_pi_id="10.0.1.1"
14 pipe_id="1"/>
15 <parameter param=" −l res.log "/>
16 </algorithm>
17 </node>
18 </network>� �

Figure 2: Configuration file example for a two node network,
where each nodes hosts a single process.

order is retained in case of several parameter elements. The
input element has an attribute source_pi_id, which speci-
fies the node from where the input is received. The attribute has
the same node’s pi_id if the input is received from a process
running on the same node. Additionally, the attribute pipe_id
is used to define the pipe between data sending and data receiving
processes. A corresponding function has the attribute output,
where target_pi_id specifies the destination’s pi_id and
pipe_id needs to be consistent with the input elements at-
tribute pipe_id of the process running at the destination.

� �
1 input_pipe = ParseArgument()
2 output_pipe = ParseArgument()
3 Param1 = ParseArgument()
4

5 while (Condition == True)
6 inputData = read(input_pipe)
7 result = runFunction(inputData,Param1)
8 write(output_pipe, result)
9 end� �

Figure 3: Pseudocode of a process: Intialization method for pars-
ing comand line arguments and block oriented data processing
method.

2.3 Communication
A process wraps an algorithm with networking parameters for
data forwarding, while the Daemon module is responsible for the
connections between processes.

In Sec. 2.2 we show how to manage and configure a process.
Accordingly, when writing the code for a process (Fig. 3), input
and output pipes need to be declared and opened for enabling the
data transmission between the processes. A process is created by
the local Daemon by executing the executable followed by
the parameter attributes and the pipe file descriptors. So each
block has to implement a parser for getting the input and out-
put file descriptors that corresponds to the process related pipes.
Examples on how to parse arguments can be found in [20] (C
language) and [21] (Python) and follow standard best practices.
Then, we read the input data from the input pipes, pass it to the
process’s internal function executing the actual algorithm (i.e.,
“runFunction” in Fig. 3), and write the results to the output pipe.

A communication can either take place between processes on



the same node (Fig. 4a) or between processes on different nodes
(Fig. 4b). Node’s internal communication is efficiently realized
by pipes, whereas inter-node links require networking techniques.
In the later case the pipe’s output is forwarded via TCP/UDP con-
nections to communicate with processes on other nodes. The spe-
cialized modules netcatConn (send data) and netcatList
(listen for data) employ the Linux netcat utility to realize these
functionalities. The decision whether a netcat connection is
needed or not is taken by the Daemon module in the background,
without the need of a user intervention.
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(a) Algorithms running on the same Raspberry Pi
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(b) Algorithms running on different Raspberry Pis

Figure 4: Communication between different Algorithms.

2.4 Executing Algorithms with MARVELO
In this section, the previous mock up example is used to explain
how MARVELO can be controlled by the user via the server mod-
ule. Lets consider the XML example in Fig. 2 which states a
WASN consisting of two nodes at the IP addresses “10.0.1.1”
and “10.0.1.2”. At first, the desired XML configuration (exam-
ple.xml) has to be defined and an initial connection to the nodes
should be established. This is accomplished by invoking the first
two of the following commands in the server shell.� �

1 setxml example.xml
2 connect
3 transferdata
4 start� �

Once the nodes are connected, we proceed with distributing the
files. On the controller, there exist two folders record_path
and beamformer_path, where the executables recording
and beamforming are respectively placed. Both processes
have additional parameters. Recording is parametrized with
the parameter channels that is set to 2 in this case, while the
processs beamforming uses the parameter "-l" to save its out-
put in a log file called res.log.

The command transferdata initiates the data transfer to the
nodes, and start triggers the Daemons to start the signal process-
ing by invoking the respective executables. Automatically a pop-
up window will appear to show the output of the processing algo-
rithms. A simple example for testing the framework can be found
on our website [22].

MARVELO can also auto-generate the XML file, if the avail-
able resources (nodes & bandwidths) and resource requirements
by the algorithm blocks are defined. To this end it solves a system
of linear equations to jointly allocate the function and forwarding
decisions (see [23] for details). In the current expansion state of
MARVELO the requirements are manually configured, but we
are in the progress of updating the framework so that these pa-
rameters are auto-collected.

3 Hardware for Sensor Nodes
The hardware design process for WASN has to incorporate a wide
range of properties and capabilities, including aspects like power
consumption, form factor, costs, computational power, memory
and sensor equipment [24]. These aspects are stated either by
the intended application scenario or the algorithms to be running

on the hardware. While some characteristics state stringent lim-
itations, e.g., the bandwidth in underwater scenarios [25], others
may be relaxed by software solutions, e.g., reducing the overall
power consumption by putting devices periodically asleep [26] or
optimizing protocols for Medium Access Control (MAC) [27] or
routing [28].

One central issue of WASNs remains often unconsidered in
hardware design: Time synchronization [29]. Due to the fact of
a missing centralized clock signal all devices of a WASN sample
data with different rates and start offsets. If a hardware integrated
solution (see [30] for example) is not possible data streams have
to be resampled in software for synchronization [31] or algorithm
selection becomes restricted to Sampling Rate Offset (SRO) in-
dependent ones.

In the following subsections we present two compact sensor
nodes on Raspberry Pi3 Model B+ basis. One uses an existing
soundcard interface and the other is a completely new develop-
ment targeting the SRO issue.

3.1 Raspberry Pi – Audio Frontend
The Raspberry Pi3 Model B+ platform offers computational
power (ARM A53 Core, 1.4 GHz) at a compact form factor and
reasonable costs. Its widespread application in smart home en-
vironments has forced the development of multi-channel sound-
cards, e.g., the Octo soundcard from Audio Injector [32].

We developed a pluggable analog frontend (see Fig. 5, blue
Printed Circuit Board (PCB)) hosting a circular microphone array
with 6 synchronously sampled audio channels. The Octo sound-
card is accessible via the ALSA interface and the required drivers
are already integrated in many Linux distributions.

The Raspberry Pi3 Model B+ (and also the Pi2 and Pi3) em-
ploys a BCM2837 chip for offering a I2S interface. This inter-
face is limited on chip-side to stereo audio [33]. To offer more
than two channels the developers of [32] utilizes a Field Pro-
grammable Gate Array (FPGA). The 8 channel Time-division
Multiplexing (TDM) audio signal from the Analog-to-Digital
Converter (ADC) is rearranged by the FPGA to a pseudo dual
channel audio signal at four times higher sampling rate. After re-
ceiving the data in the Kernel space of the Raspberry Pi the signal
is converted back to an 8 channel audio signal.

Figure 5: Raspberry Pi3 with mounted Audio Injector soundcard
and analog frontend (blue PCB).

3.2 Raspberry Pi – Quad node
The analog frontend from Sec. 3.1 is a 6 channel soundcard with
a convenient audio quality. However, the SRO problem remains
unsolved on this platform, as the crystal oscillator is neither con-
figurable at ppm precision nor is the sampling process observable
in detail.

Hence, we designed a simple pluggable card, called the Quad
node (see Fig. 6), with a configurable Any Frequency Oscillators
(AFO) (Silicon Labs Si514) driving the sampling process. Its fre-
quency resolution is configurable with a precision of 0.026 ppb.
The ADC chip from Texas Instruments (ADS 1274) samples 4



channels synchronously at 24 Bit and up to 144 kHz. On board
we placed four omni directional condenser microphones at 4 cm
distance. Audio data is exchanged by a Serial Peripheral Interface
(SPI) interface, while the Si514 is controlled via the I2C interface.

Figure 6: Raspberry Pi with mounted quad node.

3.3 Open Framework & Hardware
All schematics, PCB layouts and Gerber files for the Raspberry
Pi based sensor nodes are available from our website [34]. Feel
free to modify, enhance or change our hardware to your custom
needs.

The MARVELO framework and an installation guide on how
to setup a WASN consisting of Raspberry Pi3 Model B+ is avail-
able on our project websites [22].

4 Experiments
We evaluate our framework on a wireless 4 nodes (A, B, C, D)
Raspberry Pi network using a Python implementation of the sam-
pling rate offset estimator [15], which is depicted in Fig. 7. The
algorithm’s implementation does not reach real time processing
performance on the Raspberry Pi platform, but it is a compact
example to experimentally study MARVELO.
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Figure 7: Block diagram example from [15].

It is assumed that only nodes A and B are close to the desired
source, hence, they are selected for recording in all scenarios.
Furthermore, node D requested the SRO information for other
tasks and has to be incorporated. Since the wireless signal be-
tween D and the recording nodes is weak (i.e., low wireless links
capacities), it utilizes node C for forwarding high data rates. In
all tasks, audio recordings of 25 s are processed.

We place the processing blocks as described by Tab. 1. Ex-
emplarily, the third scenario is depicted in Fig. 8. The first three
scenarios utilize the same processing blocks in different place-
ments so that the blocks are connected via pipes, while the fourth
runs a single bulk script on node D. Hence, Centralized-4 has to

Scenario Node A Node B Node C Node D
Centralized-1 1 2 - 3,4,5,6,7,8,9
Distributed-2 1,6,8 2,7 3,4,5 9
Distributed-3 1,5,4 2,3 6,7,8 9
Centralized-4 1 2 - [15]

Table 1: Comparison of scenarios for distributed and centralized
realizations.

process the tasks sequentially while the others can process them
in parallel.

In Fig. 9, we show the network and the end to end delays
for each scenario. The former is defined as the time required to
receive the first input at D from the senders, while the latter is the
time required to process the whole recording.

Node ANode B Node C Node D

2
8 96

7

5
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41

Figure 8: Visualization of scenario ”Distributed-3”.

We observe that the centralized scenarios (Centralized-1 and
Centralized-4) are subject to higher network delay, compared to
distributed scenarios (Distributed-2 and Distributed-3), as they
need to forward the raw data in the network. Although both cen-
tralized scenarios execute the processing tasks on only one node,
Centralized-1 has a higher processing delay compared to Cen-
tralized-4. This is due to the higher interprocess communication
overhead in scenario Centralized-1 which, in our small example,
outweighs the possible advantages from executing these blocks
in parallel.

Regarding our distributed scenarios, they have a similar net-
work delay, which is in all cases lower than that of the centralized
scenarios. This is due to sending only the processed data (e.g.,
1 Byte by block 8) compared to raw audio chunks (1 kB). On
the other hand, they have different end to end delays. Scenario-2
shows a higher end to end delay (210 s), which is almost equal to
that of Centralized-4 (200 s). However, Distributed-3 shows the
best distribution in terms of network and end to end delays.
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Figure 9: End to end (blue) and network (red) delays.

5 Conclusions & Outlook
The MARVELO software framework for signal processing is a
flexible environment for hosting and distributing block-oriented
implementations of algorithms on WASNs. Its simple approach
reduces the needs for elaborated software modifications when an
existing, block-oriented implementation is adapted. Furthermore,
the presented open hardware can be customized to individual sce-
narios. Utilizing an AFO circuit enables handling synchroniza-
tion issues at a high precision in hardware.

Next, we will enhance MARVELOs abilities to automatically
profile and decide on distribution scenarios and we will add new
features for network monitoring and online decision taking.
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