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Abstract—Multi-channel speech enhancement algorithms rely
on a synchronous sampling of the microphone signals. This, how-
ever, cannot always be guaranteed, especially if the sensors are
distributed in an environment. To avoid performance degradation
the sampling rate offset needs to be estimated and compensated
for. In this contribution we extend the recently proposed co-
herence drift based method in two important directions. First,
the increasing phase shift in the short-time Fourier transform
domain is estimated from the coherence drift in a Matched Filter-
like fashion, where intermediate estimates are weighted by their
instantaneous SNR. Second, an observed bias is removed by iter-
ating between offset estimation and compensation by resampling
a couple of times. The effectiveness of the proposed method is
demonstrated by speech recognition results on the output of a
beamformer with and without sampling rate offset compensation
between the input channels. We compare MVDR and maximum-
SNR beamformers in reverberant environments and further show
that both benefit from a novel phase normalization, which we also
propose in this contribution.

I. INTRODUCTION

A common scenario for Wireless Acoustic Sensor Networks

(WASN) is given by a setup where each sensor node of

the network has an independent oscillator driving the local

Analog-to-Digital Converter (ADC). Hence, the data streams

originating from the individual sensor nodes are sampled at

slightly different rates. However, many practically relevant sig-

nal processing techniques require synchronized data streams

and are known to deteriorate with an increasing Sampling

Rate Offset (SRO), e.g., echo cancellation [1], blind source

separation [2] and beamforming [3]. Consequently, SRO esti-

mation and compensation becomes an essential task for signal

processing on WASN data streams.

The SRO can be estimated either by a time stamp exchange

algorithm (e.g., [4]), by using timing information from the

sampling process as proposed in [5], or by examining the audio

streams to obtain SRO estimates in the time [6] or frequency

[3], [7], [8] domain. Subsequently, to compensate for the SRO,

either the hardware is reconfigured [5], or the signals are

resampled in software (e.g., using Lagrange polynomials [3],

band-limited interpolation [6] or frequency domain methods

[9]), or the estimated SRO is directly taken care of in the

original signal processing task.

In [3] the authors propose to use the coherence function to

estimate the SRO between two data streams. By observing

the phase drift between the coherence functions computed

on two temporally adjacent signal segments an estimate of

the SRO can be obtained. Bahari et al. extended this idea in

[10] by replacing the temporal averaging of the observations

with a least squares approach, and in [7] an additional outlier

detection was introduced.

Some authors use an exhaustive search for determining SRO

values, where either in the time domain a scaling [6] or in the

frequency domain a resampling [8] of all possible SROs and

delays are evaluated against a cost function. If the cost function

itself is smooth enough an iterative optimization procedure

or a smart grid search can be applied to reduce the overall

computational complexity (e.g., [6]).

In this paper we extend the coherence drift based SRO

estimator in two directions. First, we introduce an SNR-related

weighting, and second, we propose a multi-stage procedure,

where SRO estimation and compensation by resampling are

alternatingly carried out. The latter is motivated by an observed

bias which increases with the true SRO. We compare the

performance of this modified estimator against the approaches

from [3] and [8].

SRO compensation is required for the subsequent signal

processing tasks. Here, we consider acoustic beamforming.

The impact of a fixed but unknown delay between channels

or even SRO on the beamforming result depends on the

implemented beamforming technique. Especially error prone

are techniques which rely on the array geometry and require

a geometrically motivated steering vector (e.g., delay and sum

beamformer or Minimum Variance Distortionless Response

(MVDR) beamformer with conventional steering vector con-

sisting of pure delays) [11], [12]. A short discussion on the

detrimental effects of even small SROs on Direction-of-Arrival

(DoA) estimates can be found in [5].

In case the beamforming technique at hand blindly es-

timates the beamforming vector from the observed data, it

may compensate for moderate delays between channels. If

the beamforming vector is extracted by using cross power

spectral density matrices only, small delays will change the

beamforming vector such that it incorporates a compensation

of those delays. Nevertheless, this renders the beamforming

vector to not be geometrically interpretable anymore.

Of particular relevance is an MVDR beamformer where

the Acoustic Transfer Function (ATF) vector is obtained as

the principal component of the target covariance matrix. This



vector is then used in the MVDR formalism to obtain the

beamforming vector [13].

An alternative, statistically motivated, beamforming ap-

proach is the maximum-SNR, also called Generalized Eigen-

value (GEV) beamformer [14], which will be put into use

here. Much in the sense of the MVDR, a target and a

noise cross power spectral density matrix is obtained from

the multichannel observation. The method can therefore also

compensate small delays inherently.

It is important to note that if the ATF vector is obtained

by eigenvector decomposition, there is still a phase ambiguity,

even in the case of the MVDR beamformer. In this contribution

we propose to fix the phase by minimizing the group delay.

To allow an objective comparison, we evaluate the perfor-

mance of the used algorithms in terms of word error rates

(WERs) with a backend based on a Wide Residual Network

(WRN) [15], [16] on a dataset based on the 4th CHiME

challenge [17] to ensure that possible gains are still visible

with a rather robust acoustic model.

The paper is organized as follows. In Section II the SRO

model is introduced and in Section III the coherence drift

is explained. Section IV discusses approaches for estimating

the SRO from the coherence function either in a single or

multi-stage fashion. Beamforming and phase normalization

techniques are presented in Section V and the utilized ASR

backend in Section VI. After discussing some experiments in

Section VII we end with some conclusions.

II. SAMPLING RATE OFFSET MODEL

Assume we select two arbitrary nodes R and S from a

sensor network. Although the sampling frequency is nominally

the same, the nodes will operate at slightly different sampling

frequencies fS and fR, since both nodes have different hard-

ware oscillators.

Node R

Node S

Sync

Block 1 Block 2

Time
τRS = N

2 ǫRS

Fig. 1. Visualization of average delay τRS , introduced by SRO ǫRS during
block-oriented processing of data streams (N = 8, B = 8).

Without loss of generality we select fR of node R to be the

reference sampling rate and define the SRO ǫRS between the

nodes R and S to be:

fS = (1 + ǫRS) · fR. (1)

Each node samples the impinging microphone signals and

generates a sequence of time-discrete values xi(n) with i ∈
{R,S} which are further processed in the Short Time Fourier

Transform (STFT) domain.

The N-point STFT Xi(l, k) of the l-th block (with block

shift B) using a periodic blackman window w(n) is given by

Xi(l, k) =

N−1
∑

n=0

w(n) · xi(n+ l ·B) · e−j 2π
N

kn (2)

where the xi(n) are the time domain samples. Here, the index

i ∈ {R,S} indicates that the signal has been sampled by

the i-th node’s oscillator. As proposed in [7] we assume the

input signals to be an additive composition of a coherent

source signal Si(l, k) (a speaker in our scenario), filtered

by an unknown transfer function Hi(l, k), and a spatially

uncorrelated noise term Vi(l, k):

Xi(l, k) = Hi(l, k) · Si(l, k) + Vi(l, k), (3)

A non-zero SRO will introduce an average delay τRS

between the data streams of the nodes (see Fig.1), which can

be approximated by τRS ≈ N
2 ǫRS (see [9], [8]). Furthermore,

it is reasonable to assume that nodes in a WASN start the

sampling process asynchronously and that the nodes are at

different distances from the source. Hence, a fixed delay τRS

between the nodes’ data streams has to be regarded in the

following. The signal modifications by the fixed delay (starting

point) and the increasing delay (SRO) can be modeled by a

multiplication with a time-variant phase term in the STFT

domain. If the overall delay between the channels remains

small compared to the STFT size the following correspondence

between the coherent signal parts can be assumed:

SR(l, k) ≈ SS(l, k) · e−j 2π
N

[τRS+(N

2
+lB)ǫRS]k. (4)

III. COHERENCE DRIFT ESTIMATION

SRO estimation is basically the task of robustly determining

the phase term in Eq. (4) [3]. To this end the coherence

function ΓR,S(l, k) of the l-th block

ΓR,S(l, k) =
ΨR,S(l, k)

√

ΨR,R(l, k) ·ΨS,S(l, k)
(5)

is employed, where Ψi,j(l, k) (i, j ∈ {R,S}) denotes the

Power Spectral Density (PSD), which is estimated via the

Welch method:

Ψi,j(l, k) =
1

NW

NW−1
∑

κ=0

Xi(l+κ, k) ·Xj(l+κ, k)∗. (6)

ΨR,S(l, k) is the cross PSD and ΨR,R(l, k) and ΨS,S(l, k) are

the auto PSDs.

In the following only a single source scenario is regarded

to keep the expressions compact, however, as explained in

[7] it may be extended towards multiple sources. Inserting

the model Eq. (3) into the Welch method Eq. (6) and using

the expressions within Eq. (5) results in Eq. (23) (see last

page), where we assumed that the unknown transfer functions

Hi(l, k) are constant within the window size of the Welch

method, i.e., it is assumed that the movement of the speaker

is negligible during the duration of a window. Eq. (23) consists

of three terms where

HR,S(k) =
HR(k)H

∗
S(k)

|HR(k)||HS(k)|
(7)



summarizes the transfer functions,

WR,S(l, k) =

NW−1
∑

κ=0
|SR(l+κ, k)|2 e+j 2π

N
κBkǫRS

√

|XR(l+κ, k)|2 · |XS(l+κ, k)|2
(8)

comprises a signal-to-noise ratio (SNR) related weighting term

and

φR,S(l, k) = e+j 2π
N

[τRS+ǫRS(
N

2
+lB)]k (9)

is the desired term for calculating the phase information.

To ease the notation we summarize the denominator terms

describing the input signal energy by

|XR(l, k)|2 =

NW−1
∑

κ=0

|SR(l+κ, k)|2 + |VR(l+κ, k))|2

|HR(k)|2
(10)

and

|XRS(l, k)|2 =

√

|XR(l, k)|2 · |XS(l, k)|2. (11)

IV. SRO ESTIMATION

Following [3] or [7] the phase information can be ap-

proximately retrieved by dividing two consecutive coherence

functions:

ΓR,S(l+p, k)

ΓR,S(l, k)
≈ e+j 2π

N
(pBk)ǫRS . (12)

However, inspecting the detailed result in Eq. (24) reveals that

this approximation relies on the assumption that the ratio

NW−1
∑

κ=0
|SR(l+κ, k)|2 e+j 2π

N
(κBk)ǫRS

NW−1
∑

κ=0
|SR(l+κ+p, k)|2 e+j 2π

N
(κBk)ǫRS

(13)

is real-valued. But this only holds if either all |SR(l+κ, k)|2
equal |SR(l+κ+ p, k)|2 or if ǫRS is close to zero. Usually it

can be assumed that speech signals are sparse and thus violate

the assumption to have equal signal power in consecutive

frames (or in frames p block sizes apart). Hence, the estimate

Eq. (12) will deteriorate with increasing values of SRO ǫRS

and frequency bins k.

Furthermore, the approach drops the important information

about the actual presence of a coherent source. Signal seg-

ments with active sources and segments without any coherent

source are treated equally, disregarding the fact that segments

with coherent sources provide more reliable information for

phase estimation. However, reliability information is available

through the magnitude of the coherence functions.

A. Weighted SRO estimation

We propose to use the complex conjugate product of con-

secutive coherence functions

ΓR,S(l+p, k) · Γ∗
R,S(l, k) = WSNR · e+j 2π

N
(pBk)ǫRS (14)

to estimate a reliability weighted phase term, where the

magnitude is proportional to the product of the coherence

function values with WSNR = WR,S(l+p, k)·W ∗
R,S(l, k). Now

averaging the complex conjugate products across an utterance

will automatically weigh each individual estimate by its SNR.

We define the temporally averaged phase information P (k)
for the Average Coherence Drift (ACD) approach by

PACD(k) =
1

L

L
∑

l=1

ΓR,S(l+p, k)

ΓR,S(l, k)
, (15)

and for our new proposed Weighted Average Coherence Drift

(WACD) method by

PWACD(k) =
1

L

L
∑

l=1

ΓR,S(l+p, k) · Γ∗
R,S(l, k), (16)

where L is the number of coherence functions averaged. The

SRO can be either estimated via the ACD approach from [3]

with

ǫ̂ ACD
RS =

1

Kmax

Kmax
∑

k=1

N

2πpBk
6
{

PACD(k)
}

(17)

or by the proposed WACD via

ǫ̂ WACD
RS =

ǫmax

π
6

{

Kmax
∑

k=1

∣

∣PWACD(k)
∣

∣ exp

(

jN 6
{

PWACD(k)
}

2pBkǫmax

)}

,

(18)

where 6 {} denotes the phase. Eq. (18) averages first across

the utterance in the time domain and subsequently projects

the result into the complex plane for averaging across the

frequency bins. Given an assumed maximum SRO of ±ǫmax,

the range of the normalized angles is limited to ±π.

Here Kmax = N/(2pBǫmax) is the maximum frequency bin

index without phase ambiguity, if the maximum SRO ǫmax

occurs [3].

B. Multi-Stage SRO estimation

Coherence drift based SRO estimation suffers from the

assumption that φR,S(l, k) (Eq. (9)) is the only phase con-

tributing term, while all other terms, e.g., the product (WACD)

or the ratio (ACD) of weighting terms WR,S(l, k), are real-

valued. This shortcoming can be addressed by a resampling

step reducing the inter-channel SRO, since with ǫRS → 0
all phase terms e+j 2π

N
κBkǫRS in Eq. (8) tend to be one and

WR,S(l, k) becomes real-valued.

Node R

Node S Timesync Resampling

Acoustic data

ǫRS

SRO
Estimate

Fig. 2. Multi-Stage SRO estimation with initial GCC-based rough time
synchronization and subsequent iterative SRO estimation and resampling.

Consider the two node example depicted in Fig. 2. At

first a rough synchronization between the audio streams of

node R and node S is conducted, where the initial (fixed)

delay τRS is estimated with a GCC-PHAT-based method [18]

and all leading zeros are dropped via an energy based Voice

Activity Detection (VAD). During the first iteration (Stage



1) the resampling step is skipped and the SRO is directly

estimated. This estimate is used to resample the data of node

S such that the SRO is reduced. Subsequently, a new SRO

estimate is calculated between the resampled signal of S and

the signal of R.

Signals are resampled using a sinc-interpolation where the

temporally adjacent values within a window size of (2·Lsinc+
1) values are utilized with

x′
S(m) ≈

n′+Lsinc
∑

n=n′−Lsinc

xR(n) sinc ((1 + ǫSR)m− n) (19)

where n′ is the index of the temporally closest sample in

xR(n) to the newly interpolated m-th sample in x′
S(m).

V. BEAMFORMING

To extract the target signal, we employ a GEV beam-

former [14]. The GEV beamformer can be derived by maxi-

mizing the SNR at the beamformer output for each frequency

bin independently. This leads to the generalized eigenvalue

problem [14]:

ΦXX(k) F(k) = λΦNN(k) F(k), (20)

where the spatial correlation matrices ΦXX(k) and ΦNN(k)
are estimated using time-frequency masks generated by a

neural network [19], [20]. The mask estimation is rather

unaffected by the sampling rate deviation, since it operates

on each channel independently and does not make use of

phases or phase differences. The network configuration and

its training procedure is the same as described in [19].

The solution to Eq. (20) yields our desired beamforming

vector FGEV(k), up to an arbitrary complex scale factor: Any

magnitude and phase factor still solves Eq. (20), which is why

the GEV beamforming approach is often said to introduce

arbitrary distortions.

We therefore carefully addressed the magnitude degree of

freedom by employing Blind Analytic Normalization (BAN)

[14]. In earlier work we demonstrated that BAN has a great

influence on perceptual quality and depending on the setup

may effect Automatic Speech Recognition (ASR) performance

as well [19] [21].

Finding a good constraint for the phase ambiguity is a bit

more intricate. A first shot is to set the phase of a reference

microphone d̃ ∈ {1, . . . , D} to zero and adjust the other

phases accordingly on each frequency independently:

F
′

d(k) = Fd(k) · exp(−j 6
{

Fd̃(k)
}

), (21)

with F(k) = (F1(k), · · ·FD(k))T. Intuitively, this is already

much better than multiplying with a random phase.

An alternative is to minimize the group delay (rate of change

between phase of subsequent frequency bins) introduced by

the filter. To achieve this, we subtract the mean phase dif-

ference between two subsequent frequencies. To account for

phase wrap, it is easier to do this by a multiplication with the

complex conjugate of the phase factor corresponding to the

phase difference:

F
′

(k) = F(k) · exp
(

−j 6
{

F
H(k − 1)F(k)

})

. (22)

VI. ASR BACKEND

The acoustic model is based on a Wide Residual Net-

work [15]. It is the same network described in the context

of the CHiME challenge [16] (network WRBN+BN). We

omit the (speaker) adaptation due to restricted computational

resources.

Previous papers also used a strong language model with

RNN rescoring and tuning of language model weights and

insertion penalties. For the given paper, however, we only

use the 3-gram language model provided by the WSJ corpus

[22] with a fixed language model weight and refrain from

RNN rescoring. The motivation is as follows: We are mostly

interested in the impact on the acoustic model, and a strong

language model may obfuscate or hide possible influences of

the evaluation at hand on word error rates.

VII. EXPERIMENTS

We conducted experiments on two different datasets. The

first is a self-compiled dataset using special recording hard-

ware (see [5] for a detailed description). In this setup two

sensor nodes were connected to a common input signal and

the hardware synchronization was modified in a way such

that the sampling clock signal generator kept a predefined

SRO between the nodes with an error of less than 0.15 ppm.

Utterances from the TIMIT corpus [23] were played and

recorded with predefined SROs between 0 ppm and 100 ppm.

Subsequently, we added uncorrelated noise to the channels to

realize different SNRs. We will refer to this data with the term

“HW-Dataset” (1100 files per SNR, each of 30 s duration).

Secondly, we used the resampling techniques from Eq. (19)

to modify recordings from the CHiME dataset. Each file and

channel was resampled with a randomly chosen, individual

SRO drawn from a uniform distribution in the range of

±50ppm. This scenario simulates a spontaneous recording

using an ad-hoc network of nodes, e.g., smartphones on a

table. Thus the algorithms had to cope with short and medium

length utterances (1.2 s - 13 s) in noisy environments (≈ 3 dB
SNR), without the possibility to learn from consecutive files.

To characterize the degree of distortion with respect to the

inter channel SROs we calculated the standard deviation of

SROs σSRO in ppm between all six channels.

In our experiments we used a FFT size of N = 8192 with

a shift in the Welch method of 1024 samples, and a temporal

distance of 64ms between the coherence functions.

A. HW-Dataset

In Fig. 3 sample results for the SRO estimation procedure

are shown. The initial estimate of 77.16ppm (1st stage) is

used in the 2nd stage to resample the signal and perform a

new estimate (new estimate is 95.29ppm). Each stage has a

less ascending phase, since we reduce the SRO between the

channels by resampling one of them. Additively combining
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Fig. 3. HW-Dataset example: Multi-Stage SRO estimation experiment show-
ing the phase estimates for different stages (ground truth 100 ppm); for each
stage the resample factor R and the newly estimated SRO ǫ̂ WACD

RS
are given.

the resampling factor and the current SRO estimate gives the

final SRO estimate at each stage. Furthermore, we can observe

that the variance of the phase estimate is reduced iteratively.
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Fig. 4. Average SRO estimation errors for ACD and WACD at 1st and 5th stage
with respect to SRO in recording (HW-Dataset, SNR 20dB). Spans show
minimum and maximum error.
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Fig. 5. Multi-Stage SRO estimation on HW-dataset database: Comparison
of ACD and WACD for different SNR conditions with ground truth SROs
between 0 and 100 ppm.

Eq. (24) and Eq. (25) indicate that the SRO estimation

errors of the ACD and the WACD approach depend on the

value of the SRO. This dependency can be seen in Fig. 4

for recordings with an SNR of 20 dB. Each stage reduces the

SRO by resampling, which in turn reduces the bias and the

variance of the estimator until the error remains on an equal

level for all SROs. This lower limit is determined by the SNR

and approximately independent of the SRO.

Fig. 5 shows the Root Mean Square Error (RMSE) for ACD

and WACD on the HW-dataset for SNRs between 10dB and

30 dB. Both approaches benefit from multi-stage resampling,

but WACD constantly outperforms ACD in terms of RMSE.

B. CHiME Dataset

In Tab. I the WERs on the CHiME 6-channel real data

evaluation test set for different SRO estimators are shown. Due

to the fact that the SNR of the recordings is low (≈ 3 dB), the

multi-stage approach is limited to a certain extent, however, it

gains some remarkable improvements in the first 6 stages (see

Fig. 6). The best results are achieved with the CORR approach

from [8] using a fine-granular grid search.

TABLE I
WERS IN [%] ON CHIME DATABASE (EVAL. TEST SET, REAL DATA) FOR

DIFFERENT SRO ESTIMATORS. REFERENCE METHODS ARE OUR

IMPLEMENTATIONS OF ACD FROM [3] AND CORR FROM [8]

Beamformer GEV-BAN MVDR σSRO

Normalization - Phase RefMic - Phase RefMic [ppm]

No Sync. 9.57 9.26 10.02 9.44 8.87 9.68 25.68

ACD,1st Stage 8.45 7.93 8.46 8.49 7.80 8.17 18.34

ACD,10th Stage 7.17 6.65 6.88 7.41 6.73 7.02 7.63

ACD,15th Stage 7.26 6.70 6.87 7.36 6.73 7.05 7.35

WACD,1st Stage 7.55 7.14 7.65 7.81 7.06 7.45 13.81

WACD,10th Stage 7.30 6.71 7.08 7.43 6.72 6.99 6.71

WACD,15th Stage 7.03 6.56 6.77 7.40 6.61 6.92 6.63

CORR 6.80 6.38 6.62 7.28 6.52 6.62 6.29

No Offset 6.92 6.38 6.77 7.24 6.45 6.84 0

2 4 6 8 10 12 14

10

15

20

Iterations

σ
S

R
O

[p
p

m
]

ACD

WACD

Fig. 6. Multi-Stage SRO estimation on CHiME database: Average standard
deviation of SROs between resampled data streams.

The newly proposed phase normalization technique

(“Phase”), which reduces the group delay, shows the best

results under all SRO conditions and for both beamform-

ers. The normalization according to a reference microphone

(“RefMic”) also improves the results compared to no phase

normalization (“-”), but it is less effective than reducing the

group delay. A non-zero SRO distracts the beamformer and

causes higher WERs. ACD and WACD both reduce the inter-

channel SROs, but again WACD delivers significantly better

results.

VIII. CONCLUSIONS

We considered coherence drift based SRO estimation for

WASN scenarios and advanced the existing ACD approach



towards a Matched-filter like technique. Furthermore, the

shortcomings of a key assumption in the derivation of the

estimators are discussed and a multi-stage processing is pro-

posed for mitigating its detrimental effects. Experiments on

two databases show the effectiveness of the new approach in

terms of SRO estimation precision and WERs. Additionally,

we proposed a new phase normalization technique which is

applicable to beamformers computing an ATF via eigenvector

decomposition, such as the GEV and MVDR beamformer. It

improves the WERs on the CHiME corpus significantly, both

on synchronized recordings and on SRO distorted ones.
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ΓR,S(l, k) =

HR(k)H∗

S
(k)√

|HR(k)|2·
√

|HS(k)|2

(

NW−1
∑

κ=0
|SR(l+κ, k)|2ej 2πN (κBk)ǫRS

)

ej
2π

N
[τRS+(N

2
+lB)ǫRS]k

√

(

NW−1
∑

κ=0
|SR(l+κ, k)|2 + |VR(l+κ,k))|2

|HR(k)|2

)

·
(

NW−1
∑

κ=0
|SS(l+κ, k)|2 + |VS(l+κ,k))|2

|HS(k)|2

)

(23)

ΓR,S(l+p, k)

ΓR,S(l, k)
=

|XRS(l, k)|2
|XRS(l+p, k)|2

·

NW−1
∑

κ=0
|SR(l+κ, k)|2 ej 2πN (κBk)ǫRS

NW−1
∑

κ=0
|SR(l+κ+p, k)|2 ej 2πN (κBk)ǫRS

ej
2π

N
(pBk)ǫRS (24)

ΓR,S(l+p, k) · Γ∗
R,S(l, k) =

NW−1
∑

κ=0
|SR(l+κ+p, k)|2 e+j 2π

N
(κBk)ǫRS

|XRS(l+p, k)|2

NW−1
∑

κ=0
|SR(l+κ, k)|2 e−j 2π

N
(κBk)ǫRS

|XRS(l, k)|2
ej

2π

N
(pBk)ǫRS (25)
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